Least squares type estimation of the transition density of a particular hidden Markov chain
نویسنده
چکیده
Abstract: In this paper, we study the following model of hidden Markov chain: Yi = Xi + εi, i = 1, . . . , n + 1 with (Xi) a real-valued stationary Markov chain and (εi)1≤i≤n+1 a noise having a known distribution and independent of the sequence (Xi). We present an estimator of the transition density obtained by minimization of an original contrast that takes advantage of the regressive aspect of the problem. It is selected among a collection of projection estimators with a model selection method. The L-risk and its rate of convergence are evaluated for ordinary smooth noise and some simulations illustrate the method. We obtain uniform risk bounds over classes of Besov balls. In addition our estimation procedure requires no prior knowledge of the regularity of the true transition. Finally, our estimator permits to avoid the drawbacks of quotient estimators.
منابع مشابه
Empirical Bayes Estimation in Nonstationary Markov chains
Estimation procedures for nonstationary Markov chains appear to be relatively sparse. This work introduces empirical Bayes estimators for the transition probability matrix of a finite nonstationary Markov chain. The data are assumed to be of a panel study type in which each data set consists of a sequence of observations on N>=2 independent and identically dis...
متن کاملRecursive Estimation in Hidden Markov Models
We consider a hidden Markov model (HMM) with multidimensional observations, and where the coefficients (transition probability matrix, and observation conditional densities) depend on some unknown parameter. We study the asymptotic behaviour of two recursive estimators, the recursive maximum likelihood estimator (RMLE), and the recursive conditional least squares estimator (RCLSE), as the numbe...
متن کاملEvaluation of First and Second Markov Chains Sensitivity and Specificity as Statistical Approach for Prediction of Sequences of Genes in Virus Double Strand DNA Genomes
Growing amount of information on biological sequences has made application of statistical approaches necessary for modeling and estimation of their functions. In this paper, sensitivity and specificity of the first and second Markov chains for prediction of genes was evaluated using the complete double stranded DNA virus. There were two approaches for prediction of each Markov Model parameter,...
متن کاملThree techniques for state order estimation of hidden Markov models
In this contribution three examples of techniques that can be used for state order estimation of hidden Markov models are given. The methods are also exem-pliied using real laser range data, and the computational burden of the three methods is discussed. Two techniques, Maximum Description Length and Maximum a Posteriori Estimate, are shown to be very similar under certain circumstances. The th...
متن کاملEstimation of Channel State Transition Probabilities Based on Markov Chains in Cognitive Radio
—Prediction of spectrum sensing and access is one of the keys in cognitive radio (CR). It is necessary to know the channel state transition probabilities to predict the spectrum. By the use of the model of partially observable Markov decision process (POMDP), this paper addressed the spectrum sensing and access in cognitive radio and proposed an estimation algorithm of channel state transition...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008